The odd harmonious labeling of matting graph
نویسندگان
چکیده
منابع مشابه
Odd Harmonious Labeling of plus Graphs
A graph G(p, q) is said to be odd harmonious if there exists an injection f : V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function f∗ : E(G) → {1, 3, · · · , 2q − 1} defined by f∗(uv) = f(u) + f(v) is a bijection. In this paper we prove that the plus graph Pln , open star of plus graph S(t.P ln), path union of plus graph Pln, joining of Cm and plus graph Pln with a path, one point u...
متن کاملOdd Harmonious Labeling of Some New Families of Graphs
A graph G(p, q) is said to be odd harmonious if there exists an injection f : V (G) → {0, 1, 2, · · · , 2q − 1} such that the induced function f∗ : E(G) → {1, 3, · · · , 2q − 1} defined by f∗(uv) = f(u) + f(v) is a bijection. A graph that admits odd harmonious labeling is called odd harmonious graph. In this paper, we prove that shadow and splitting of graph K2,n, Cn for n ≡ 0 (mod 4), the grap...
متن کاملSome Graph Operations Of Even Vertex Odd Mean Labeling Graphs
A graph with p vertices and q edges is said to have an even vertex odd mean labeling if there exists an injective function f:V(G){0, 2, 4, ... 2q-2,2q} such that the induced map f*: E(G) {1, 3, 5, ... 2q-1} defined by f*(uv)= f u f v 2 is a bijection. A graph that admits an even vertex odd mean labeling is called an even vertex odd mean graph. In this paper we pay our attention to p...
متن کاملFurther results on odd mean labeling of some subdivision graphs
Let G(V,E) be a graph with p vertices and q edges. A graph G is said to have an odd mean labeling if there exists a function f : V (G) → {0, 1, 2,...,2q - 1} satisfying f is 1 - 1 and the induced map f* : E(G) → {1, 3, 5,...,2q - 1} defined by f*(uv) = (f(u) + f(v))/2 if f(u) + f(v) is evenf*(uv) = (f(u) + f(v) + 1)/2 if f(u) + f(v) is odd is a bijection. A graph that admits an odd mean labelin...
متن کاملk-odd mean labeling of prism
a $(p,q)$ graph $g$ is said to have a $k$-odd mean labeling $(k ge 1)$ if there exists an injection $f : v to {0, 1, 2, ldots, 2k + 2q - 3}$ such that the induced map $f^*$ defined on $e$ by $f^*(uv) = leftlceil frac{f(u)+f(v)}{2}rightrceil$ is a bijection from $e$ to ${2k - 1, 2k + 1, 2k + 3, ldots, 2 k + 2q - 3}$. a graph that admits $k$...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2021
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1722/1/012050